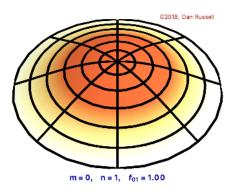


Circular membrane

2ND NOVEMBER 2020

Laplacian polar coordinates



•Since we want to discuss the vibration of circular membranes, the most suitable Laplacian in the wave equation has to be described in Polar coordinates.

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} \phi + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}$$

•We only consider a membrane of radius R and determine the solution $\phi(r,t)$ that are radially symmetric.

•The wave equation becomes

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}$$

•And the boundary condition stating that $\phi(\mathbf{R},t) = 0$ at all times

R x

Solution of the wave equation : Bessel's equation

- •Using the method of separation of variables, we first determine solution $\phi(r,t) = R(r)T(t)$.
- •Substituting ϕ and its derivatives back into the wave equation and arrange the expression as follows $\frac{\ddot{T}(t)}{dt} = \frac{1}{dt} \left(R''(r) + \frac{1}{dt} R'(r) \right) = -k^2$

$$\frac{T(t)}{c^2 T(t)} = \frac{1}{R(r)} \left(R''(r) + \frac{1}{r} R'(r) \right) = -k^2$$

- •Note that dots denote derivatives with respect to t and primes denote derivatives with respect to r.
- •The expressions on both sides must equal a constant. This gives two linear ODEs,

$$\ddot{T}(t) + \lambda^2 T(t) = 0 \quad \text{where} \quad \lambda = ck \tag{1}$$
$$R''(r) + \frac{1}{r}R'(r) + k^2 R(r) = 0 \tag{2}$$

General form of Bessel's equation

•This is a general form of Bessel's equation

$$\frac{d^2}{dx^2}y + \frac{1}{x}\frac{d}{dx}y + \left(1 - \frac{v^2}{x^2}\right)y = 0$$

•Complete solution of the Bessel's equation is given as $y = CJ_{\nu}(x) + DY_{\nu}(x)$

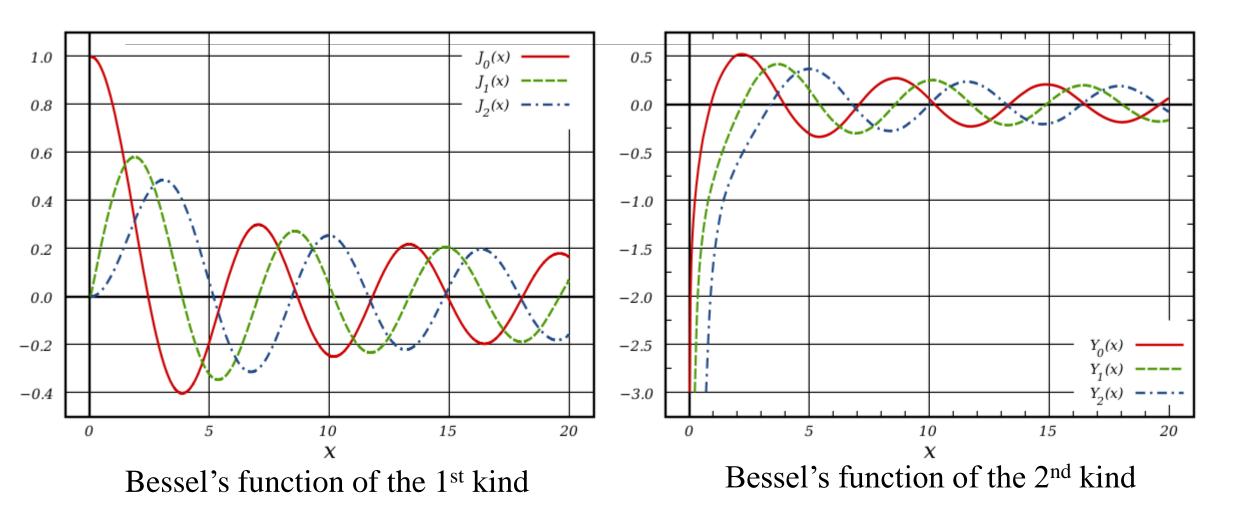
•Where v is the order of the equation

 J_{ν} is the Bessel's function of the 1st kind order ν

 Y_{ν} is the Bessel's function of the 2nd kind order ν

and C and D are arbitrary constants.

Bessel functions



Solution of the linear ODE

•Recall the linear ODE eq. (2)

$$R''(r) + \frac{1}{r}R'(r) + k^2R(r) = 0$$
 (2)

•We can reduce (2) to Bessel's equation if we set s = kr. Then 1/r = k/s and, keeping the notation R for simplicity.

$$R' = \frac{dR}{dr} = \frac{dR}{ds}\frac{ds}{dr} = \frac{dR}{ds}k \text{ and } R'' = \frac{d^2R}{ds^2}k^2$$

•By substituting this into eq. (2) and omitting the common factor k^2 we have

$$\frac{d^2R}{ds^2} + \frac{1}{s}\frac{d}{ds}R + R = 0$$
(3)

$$\frac{d^2R}{ds^2} + \frac{1}{s}\frac{d}{ds}R + R = 0$$
(3)

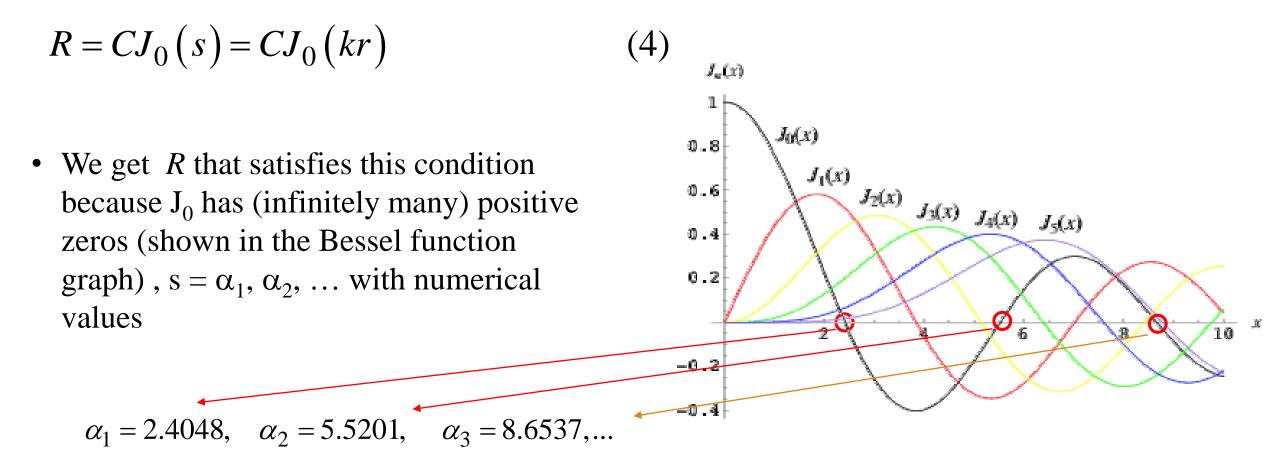
$$\frac{d^2}{dx^2}y + \frac{1}{x}\frac{d}{dx}y + \left(1 - \frac{v^2}{x^2}\right)y = 0$$

Bessel's equation

- This is clear that eq.(3) corresponds to the expression of the Bessel's equation with order v = 0.
- Solutions of eq. (3) are Bessel function J_0 and Y_0 of the first and second kind.
- But \mathbf{Y}_0 becomes infinite at 0, so that we cannot use it because the vibration of the membrane must always remain finite.
- Thus, the solution becomes

$$R = CJ_0(s) = CJ_0(kr) \tag{4}$$

• Consider eq. (4) along with the boundary condition $\phi(\mathbf{R},t) = 0$



Bessel's function of the 1st kind

https://electronics.stackexchange.com/questions/73334/using-bessel-function-graph-to-finde-out-side-bands 8

• Due to multiple values of argument that give $J_0 = 0$, a modification can be made as follows

$$kR = \alpha_m$$
 thus $k = k_m = \frac{\alpha_m}{R}$, $m = 1, 2, ...$

• Hence, the functions $R_m(r) = CJ_0(k_m r) = CJ_0\left(\frac{\alpha_m}{R}r\right)$ (5)

are solutions of eq. (2) that are zero on the boundary circle r = R.

• This suggests that the solution for linear ODE eq. (1) can be given as

$$T_m(t) = A_m \cos \lambda_m t + B_m \sin \lambda_m t \tag{6}$$

• Where $\lambda = \lambda_m = ck_m = c\alpha_m/R$

A complete solution for wave function of a circular membrane

•Therefore, the wave function with a radial symmetry for a circular membrane can be written as $\phi(r,t) = R(r)T(t)$.

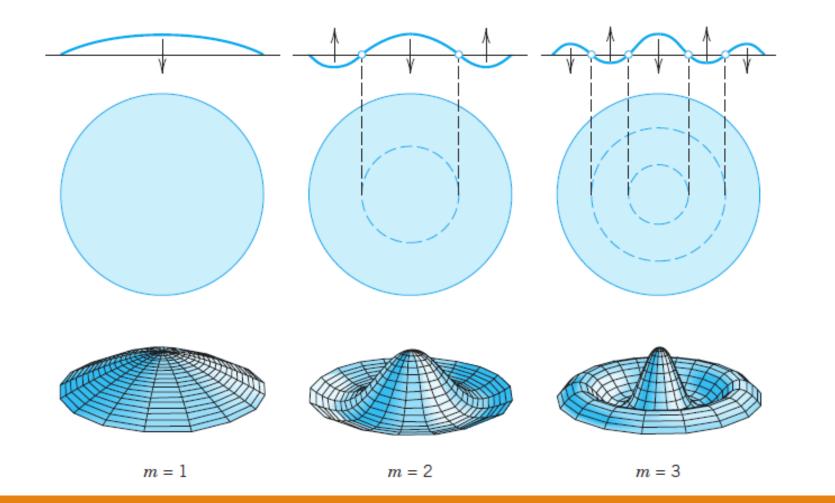
$$\phi(r,t) = R_m(r)T_m(t) = T_m(t) = (A_m \cos \lambda_m t + B_m \sin \lambda_m t)CJ_0\left(\frac{\alpha_m}{R}r\right)$$

•The vibration pattern of the circular membrane is described by the radial function R.

•For example : m = 1, and 0 < r < R, ϕ becomes a maximum value when r = 0 and the function gradually reduced to zero; i.e. $J_0(\alpha_1) = 0$ at r = R,

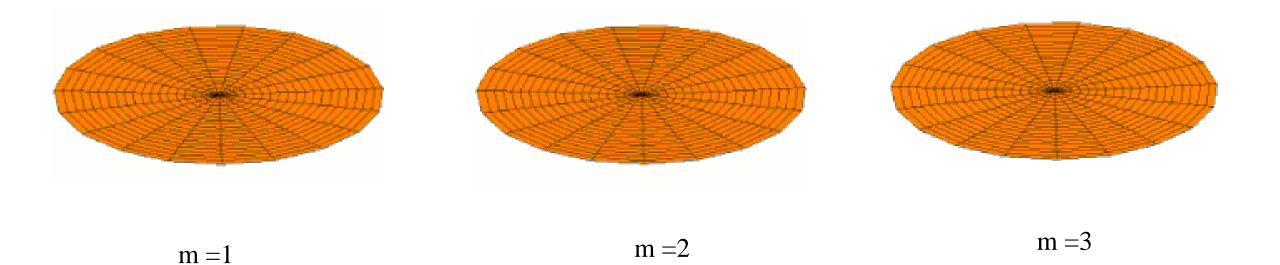
m = 2 and 0 < r < R, ϕ becomes a maximum value when r = 0 and the function becomes zeros twice; i.e. $J_0(\alpha_1) = 0$ and $J_0(\alpha_2) = 0$ at r = R. Under this condition, there is **one nodal line**.

Normal modes of the circular membrane in the case of vibration independent of angle



http://zeta.math.utsa.edu/~gokhman/courses/mat3623/Membrane.pdf

Vibration patterns of a circular membrane



https://en.wikipedia.org/wiki/Vibrations_of_a_circular_membrane